Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Membranes (Basel) ; 13(4)2023 Apr 11.
Article in English | MEDLINE | ID: covidwho-2303411

ABSTRACT

According to the World Health Organization, antibiotic resistance is one of the main threats to global health. The excessive use of several antibiotics has led to the widespread distribution of antibiotic-resistant bacteria and antibiotic resistance genes in various environment matrices, including surface water. In this study, total coliforms, Escherichia coli and enterococci, as well as total coliforms and Escherichia coli resistant to ciprofloxacin, levofloxacin, ampicillin, streptomycin, and imipenem, were monitored in several surface water sampling events. A hybrid reactor was used to test the efficiency of membrane filtration, direct photolysis (using UV-C light emitting diodes that emit light at 265 nm and UV-C low pressure mercury lamps that emit light at 254 nm), and the combination of both processes to ensure the retention and inactivation of total coliforms and Escherichia coli as well as antibiotic-resistant bacteria (total coliforms and Escherichia coli) present in river water at occurrence levels. The membranes used (unmodified silicon carbide membranes and the same membrane modified with a photocatalytic layer) effectively retained the target bacteria. Direct photolysis using low-pressure mercury lamps and light-emitting diode panels (emitting at 265 nm) achieved extremely high levels of inactivation of the target bacteria. The combined treatment (unmodified and modified photocatalytic surfaces in combination with UV-C and UV-A light sources) successfully retained the bacteria and treated the feed after 1 h of treatment. The hybrid treatment proposed is a promising approach to use as point-of-use treatment by isolated populations or when conventional systems and electricity fail due to natural disasters or war. Furthermore, the effective treatment obtained when the combined system was used with UV-A light sources indicates that the process may be a promising approach to guarantee water disinfection using natural sunlight.

2.
J Venom Anim Toxins Incl Trop Dis ; 28: e20220020, 2022.
Article in English | MEDLINE | ID: covidwho-2154416

ABSTRACT

Peripheral facial paralysis (PFP) has been shown to be a neurological manifestation of COVID-19. The current study presents two cases of PFP after COVID-19, along with a rapid review of known cases in the literature. Both case reports were conducted following CARE guidelines. We also performed a systematic review of PFP cases temporally related to COVID-19 using PubMed, Embase, and Cochrane Library databases on August 30, 2021, using a rapid review methodology. The two patients experienced PFP 102 and 110 days after COVID-19 symptom onset. SARS-CoV-2 RNA was detected in nasal samples through reverse-transcription real-time polymerase chain reaction (RT-qPCR) testing. Anosmia was the only other neurological manifestation. PFP was treated with steroids in both cases, with complete subsequent recovery. In the rapid review, we identified 764 articles and included 43 studies. From those, 128 patients with PFP were analyzed, of whom 42.1% (54/128) were male, 39.06% (50/128) female, and in 23 cases the gender was not reported. The age range was 18 to 59 (54.68%). The median time between COVID-19 and PFP was three days (ranging from the first symptom of COVID-19 to 40 days after the acute phase of infection). Late PFP associated with COVID-19 presents mild symptoms and improves with time, with no identified predictors. Late PFP should be added to the spectrum of neurological manifestations associated with the long-term effects of SARS-CoV-2 infection as a post COVID-19 condition.

SELECTION OF CITATIONS
SEARCH DETAIL